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Abstract: The use of simulation data for learning Causal Bayesian Networks
(CBN) can significantly reduce the need for costly and time-consuming real-world
robot interaction. However, sim-to-real evaluation is a necessary step to deploy a
simulation-learned CBN in reality due to the discrepancies in sensing, actuation,
and environmental dynamics between simulation and reality. The main challenges
in sim-to-real transfer are the absence of real-robot evaluation datasets tailored for
CBN learning. In this paper, we propose task-agnostic guidelines for real-robot
data collection specifically designed to evaluate CBNs. As a proof of concept,
we apply them to a robotic platform performing a concrete task, i.e., the robot
TIAGo performing a two-cube stacking task, and we collect the real-robot dataset
from 100 trials. As a case study, we demonstrate how the dataset can be used to
evaluate a simulation-trained CBN on real-robot executions, reporting 10% accu-
racy drop from sim-to-real transfer. We demonstrate that our approach provides a
quantifiable measurement of sim-to-real transfer for CBNs, reducing the need for
expensive real-robot data from thousands of trials for training purposes to a small
sim-to-real validation set.

Keywords: Sim-to-Real Transfer, Causality in Robotics

1 Introduction

Simulation and a proper sim-to-real transfer can reduce the need for costly and time-consuming real-
world robot interaction. Simulation environments allow faster, repeatable experiments, safer explo-
ration of diverse conditions, and more scalable, lower-cost data acquisition than physical robots [1].
However, models trained in simulation often face a sim-to-real gap when transferred and deployed
to real robots, caused by discrepancies in sensing, actuation, and environmental dynamics between
simulation and reality [2]. Therefore, sim-to-real evaluation is necessary for applying large-scale
simulation data as a complement to costly real-world samples.

Causal models, for example, Causal Bayesian Networks (CBNs), are a compelling candidate for
investigating how simulation and sim-to-real transfer can reduce the need for expensive real-robot
data. Their training processes are inherently data-demanding due to their statistical nature, while
they offer a principled way to achieve sample-efficient learning in robotics by identifying the fea-
tures relevant to task outcomes and therefore reducing data dimensionality crucial for decision-
making [3]. Most existing causal learning approaches rely purely on simulation or human demon-
stration data, even though their models are intended to support real-robot reasoning [4, 5, 6, 7]. For
causal methods that model cause-effect relationships between environmental features and their ef-
fects on task execution success, the sim-to-real gap leaves a critical question: are the cause—effect
relations learned in simulation still valid under real-world conditions?
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Figure 1: Simulation-learned CBN requires a real-robot dataset to evaluate whether its learned causal
relationships transfer to reality. Since CBN predicts the probability of execution outcome using
relevant features, the robot can collect the relevant features while ignoring the irrelevant features,
improving data efficiency and rationality.

Some prior works attempt to model uncertain noise and include real-world applicability: Canniz-
zaro [8] modeled execution uncertainty in simulation, while Diehl et al.[9] and Brawer et al.[10]
evaluated models with limited real-robot data. However, these real-world datasets are not publicly
available, and a detailed description of the robotic setup, the requirements for real-data acquisition,
and the data collection protocol are missing.

It is evident that the success of the sim-to-real models greatly depends on the quality of the dataset
used to obtain the models. To properly evaluate the robustness of the sim-to-real gap, the mod-
els obtained from simulations should be evaluated in real-world experiments. For this, we need to
carefully design and collect real-robot datasets under some principles: variables should match simu-
lation definitions and semantics, measurements must be time-aligned, and experiments should span
diverse conditions to capture realistic variations and noise. Furthermore, it is essential to under-
stand how much sensing and information is needed: the dataset design must specify the necessary
robot platform to perform the same task as in simulation, and the sensor modalities required to ob-
serve and measure the corresponding variable values. Despite the strong need, there is currently
neither a publicly available real-robot dataset purpose-built for CBN learning and evaluation, nor an
established methodology guiding the real-robot causality-structured data collection. Existing ma-
nipulation datasets [11, 12, 13] focus on control or perception benchmarking, but do not provide
structured cause, effect, and outcome variables that are suitable for causal model learning. To ad-
dress this gap, our second contribution is a set of task-agnostic real-robot data collection guidelines
tailored to evaluate the models from CBN learning.

Furthermore, as a proof of concept, we apply these guidelines to collect and release a 100-trial
real-robot dataset on a two-cube stacking task with a TIAGo robot as our third contribution', which
addresses the problem of the lack of real-robot datasets for causal learning. Finally, as a case study
for the use of the dataset, we use it in an existing CBN simulation-learning pipeline by extending a
sim-to-real evaluation module to validate simulation-learned CBNs against real-world trials in terms
of distribution robustness and predictive accuracy. The experiment demonstrates that our approach
provides a quantifiable measurement of how well the CBN obtained from simulated data transfers
to reality. Depending on the use case (e.g., the severity of consequences when failures occur), one
can decide whether the sim-to-real performance is sufficient for real-robot deployment or whether
further refinement with real-world data is required. Importantly, our sim-to-real evaluation quantifies
how reliably simulation can serve as a complement for real-world data in CBN learning, therefore
reducing costly robot experimentation.

This paper summarizes our main findings, presents ongoing experiments, and invites the community
to discuss the definition of guidelines to facilitate real-world data collection.

!"The Dataset is available at https://gitlab.com/craft_lab/causality-robotics/causalrobot_
eurobin/eurobin_cubestacking_tiago_dataset .git
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2 Preliminaries of Causal Learning Process

2.1 Causal Bayesian Networks (CBNs)

We adopt CBNs as the fundamental model since they capture both directed causal relations and
probabilistic dependencies [14], different from other causal models such as structural equation mod-
els [15] and additive noise models [16]. A CBN is defined as a directed acyclic graph (DAG)
G = (X, A) [17], where nodes X represent N random variables (e.g., task-relevant states or out-
comes), to describe each action; here, an action refers to a specific robot-executed task, such as
picking up a cube and placing it at a target location. Arcs A denote causal relations between the
variables. The joint distribution factorizes as:

N
i=1

with ITx, the parents of X;. Learning a Bayesian network from data usually involves two steps:

1. Structure learning. The process [9] employs the PC algorithm [18], which infers causal edges
through conditional independence tests. Since many algorithms, including PC, do not handle causal
connections between mixed discrete—continuous variables [9], continuous variables are first dis-
cretized into equal-frequency intervals. Alternative approaches are reviewed in [19].

2. Parameter estimation. Then, parameter learning is performed to estimate the local probability
distributions of the factorization in Equation 1 (denoted as @ = P(X;|Ilx,)). To fit € from the
data, the Maximum Likelihood Estimation (MLE) is used in the pipeline, estimating all entries in
the conditional probability tables 6, V2 € Val(X;), and Vu € Val(ILy, ), where Val(X;) signifies
all possible values of X;, and Val(Ilx,) encompasses all combinations of potential values of IIx,.

2.2 Simulation-Based CBN Learning Pipeline

The existing simulation-based CBN learning pipeline from prior work [9, 20] is illustrated in the
left part of Fig. 1. In the process, Simulation data is used to train and evaluate the obtained causal
model. A large dataset is generated in a simulation environment (e.g., Unity 3D) by executing task
variants with commanded variables. Then, a CBN is learned from simulations. This model is used
to predict the success of an action given the current state representation and search for corrective
action (variable combination predicted as successful) in case the action is expected to fail.

3 Guidelines for Real-Robot Dataset Collection

3.1 Dataset Principles for CBN learning

Datasets for causal models sim-to-real transfer must satisfy the following causal modelling and
inference principles: (P1) The dataset should include the task outcome variable and all ancestor
variables of it in the DAG. This specification allows the estimation of the corresponding Markov
kernels P(X;|Ilx,) along all causal paths leading to task outcome using the datasets [14]; (P2)
The dataset should include sufficient coverage of parent variable configurations for the estimation
of conditional distributions [21]; (P3) Evaluating causal effects requires interventions (i.e., setting
cause variables to specific values) to evaluate the effect of causes on outcomes [14]; (P4) CBN
variables often abstract dynamic states at specific timepoints. In the dataset, maintaining semantic
consistency across trials preserves the meaning of the conditional probability distributions [21]; (P5)
The dataset should capture real-world noise and deviations [9].

3.2 Assumption

Since the causal model is first learned from simulation, we assume that all variables relevant to the
task outcomes are defined and observed in the learning process and that there are no unmeasured



confounders affecting the learned causal graph. This assumption is reasonable in our sim-to-real set-
ting, as the evaluation focuses on validating whether the simulation-discovered cause-effect relations
hold on the real robot, rather than discovering new causal relations. In future work, the assumption
could be relaxed by defining measurable metrics to verify the faithfulness of the learned DAG (e.g.,
measuring the identifiability of causal effects [22]).

3.3 Task-Agnostic Guidelines

1. Define relevant cause variables and goal variables based on the causal graph learned from
simulation. (P1) Given the CBN over X learned from simulation, we extract subsets of variables
relevant for evaluation. Specifically, we define cause variables C C X and effect variables E C X.
Variables outside C U E are treated as irrelevant for sim-to-real evaluation. The success of an action
is specified by a set of goal variables G C E with predefined success conditions Gyy.. For example,
in a cube-stacking task, a goal variable G may be onTop, with success defined as onTop = TRUE.

2. Assess variable observability and sensor requirements. (P1) Each variable in C, E, G must
be observable from the robot’s sensor and perception system.

3. Include diverse data samples and controlled variations. (P2) To make the CBN realistic about
learning the causal relations, the data set should include sufficient variation between the values
of the key variables. This can be achieved by systematically commanding different values of the
controllable variables C during data collection.

4. Ensure interventional ability of cause variables. (P3) To ensure data diversity, the causal
variables C should be actively manipulable on the real robot, reflecting the range of possible inter-
ventions available in simulation. This means that the robot should be able to directly set values of
C independently of other variables, as in the simulation setup.

5. Capture single-value data with time-aligned observations. (P4) Rather than using continuous,
time-varying sensor streams (e.g., end-effector trajectory), CBNs commonly work on static, single-
value variables where each variable has a single value per trial. During real robot execution, these
variables are single measurements extracted from raw sensor streams at specific and well-defined
moments. For example, instead of storing the whole end-effector trajectory, we should only record
the final placement position. To make such single-value observations comparable across trials, the
extraction must be time-aligned. The measurement can be triggered by time stamps or sensor signals.

6. Record real-world noise and execution deviations. (P5) Since the values of C are precom-
manded before execution in the real-robot setup, there might be a deviation between the command
and the actual execution. Recording the noisy real-world signals instead of the planned values allows
us to evaluate the causal model under realistic conditions.

4 Experiments

As a proof-of-concept for the real-robot data collection guidelines and the sim-to-real evaluation
stages of our pipeline, we implement a physical robot experiment in a concrete scenario: a Cube-
Stacking environment. As defined in previous work [9], the Cube-Stacking environment consists of
three cubes CubeUpl, CubeUp2 and CubeDown (see the left part of Fig. 2). The goal is to place
CubeUp?2 on top of CubeUpl and CubeUpl on top of CubeDown. All cubes have a side length of 5
cm. We describe the Cube-Stacking task with the help of ten variables:

X = {xOffl, y0f£f1, drop0ff1, onTopl, cubeColorl, x0f£2, yOf£2, drop0ff2, onTop2, cubeColor2}

4.1 CBN Learning in Simulation

Following the simulated CBN learning step, we collect a training dataset of 1,000,000 samples and
an evaluation dataset of 80,000 samples. Each data sample takes six seconds to generate in the
simulation. All task variables X are sampled according to the right part of Fig. 2 for each 2-Stack
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Figure 2: Left: Defines the causal BN variables for the 2-Stack task (variables that describe the
stacking relationship between CubeUp1 and CubeDown are defined analogously) [9]. Right: Distri-
bution of initialization variables in simulation experiments.

experiment in the Unity3D simulation environment, where cubes drop according to the sampled
parameters without a simulated robot. Fig. 3 illustrates the graphical structure of the causal model
G = (V, A) learned from the simulation training dataset.

4.2 Applying the Guidelines in the Real-Robot Setup

4.2.1 Define relevant cause variables and goal variables (P1)

Based on the obtained causal graph (see Fig. 3), we can define the out-
comes G = {onTop1, onTop2}, success condition Gygyec = {onTop1 =
1& onTop2 = 1} and causes C = {x0ff1l,y0ffl x0ff2,yOff2}. We could define

{drop0ff1,drop0ff2, cubeColorl, cubeColor2} as irrelevant features for causal eval-
vation.  We still record dropOffl and dropOff2 in the dataset: While they are not
used in our causal evaluation (the simulation-trained model excludes them), they can cap-
ture variation in cube placement and may prove useful for future analyses. These vari-
ables are therefore included and clearly labeled in the dataset for completeness.  For
sim-to-real evaluation, they can be optionally omitted to reduce dataset dimensionality.

cube) /cube) /drop)/drop
Color1) \Color Off2 / \Off1

Figure 3: The obtained causal graph. Directed
edges indicate causal dependencies between
variables, for example, onTop1 is causally influ-

4.2.2 Variable
Observability and Sensor Requirements (P1)

In this experiment, outcomes onTopl, onTop2
were observed by a human, while the robot has
a sufficient perception setup to measure the exe-
cution offsets during an action.

Because the robot’s onboard camera was often
occluded by its own arm during manipulation, we

used an external Intel RealSense camera d435i for
tracking. This camera was positioned on the op-
posite side of the table relative to the robot, over-
looking the workspace, as shown in Fig. 4a. A

enced by x0ff1 and yOf£f1. Conversely, the ab-
sence of edges signifies no detected causal rela-
tionships; for instance, cube colors were found
to have no causal effect on any other variables.

unique ArUco marker was attached to one face of each cube, allowing cube detection, tracking
and pose estimation using RGB images. These settings ensure the variables X are observable and
measurable.

4.2.3 Diverse Data Samples and Controlled Variations (P2)

During each stack execution, the target stacking positions were determined before moving the
robot’s arm to each respective goal location (e.g., the position of CubeDown was selected before
stacking CubeUpl). For instance, in Fig. 4b (top row, second image from the left), the stacking
position for CubeUp] is established before the arm transitions into the pre-stack pose. To ensure a
diverse dataset, we vary the commanded stacking offsets for 100 experiment trials, which allows us
to include both successful and less optimal stacking scenarios. The full set of commanded stacking
positions is presented in the second column of Table 1. We selected these commanded positions
to cover various stack configurations, including nominal target locations and deliberate positional



offsets in different directions and heights. This strategy allows for capturing both successful stacks
and failure cases caused by positioning errors.

Table 1: Summary statistics (mean + SD) for each trial group.

Trials C ded xOff1 (cm) yOff1 (cm) dropOff1 (cm) xOff2 (cm) yOff2 (cm) dropOff2 (cm)
-5 (0,0,0.5), (0,0,0.5) —0.503 £0.229 | —0.249£0.134 | 0.586 £0.051 | —0.858 £0.329 | —0.269 £ 0.104 | 0.592 £ 0.065
6-10 (1,0,0.5),(1,0,0.5) —0.530 £0.389 | —0.164 +0.058 | 0.625+0.088 | —0.436 +0.495 | —0.143 £0.074 | 0.590 & 0.040
11-15 (2,2,0.5),(2,2,0.5) 1.56 £ 0.427 1.80 £0.012 0.670 £ 0.100 1.83 £0.157 1.84 £0.034 0.591 £ 0.051
16-20 (1,-1,0.5), (1,-1,0.5) 0.570 £ 0.302 —1.4140.070 | 0.610£0.044 | 0.37040.257 —1.43£0.100 | 0.595+0.070
21-30 | (1.5,-1.5,0.5),(-1.5,1.5,0.5) | 0.583 £ 0.425 —1.794+0.068 | 0.638£0.081 | —2.32+0.568 1.31 £0.102 0.601 £ 0.044
31-40 (0,-1.5,0.5),(0,0,0.5) —0.968 £0.622 | —2.00£0.068 | 0.655+0.067 | —0.743 +0.328 | —0.459 £0.058 | 0.596 & 0.060
41-45 (0, 1.0, 0.5), (0, 1.0, 0.5) —0.807 £0.583 | 0.854 +0.319 0.651 £0.073 | —0.430 £0.325 | 0.916 £0.337 | 0.577 £0.048
46-50 (0,0, 1.0), (0, 0, 1.0) —0.254 £0.367 | —0.440£0.040 | 1.114+0.037 | —0.4224+0.263 | —0.440 £0.055 | 1.09 £0.061
51-55 (1,0, 1.0), (1, 0, 1.0) 0.540 £0.251 | —0.514 £0.045 | 1.11 £0.046 0.834£0.166 | —0.482+0.041 | 1.03 £ 0.068
56-60 (2,2,1.0), (2,2, 1.0) 1.72+0.313 1.54 £ 0.031 1.11 £ 0.029 1.81 +£0.311 1.71 +£0.110 1.01 £0.046
61-65 (1,-1, 1.0), (1, -1, 1.0) 0.921 £ 0.361 —1.44 4+ 0.091 1.05 £ 0.057 0.690 £ 0.240 —1.51 £0.092 1.09 £ 0.081
66-75 | (1.5,-1.5,1.0), (-1.5, 1.5, 1.0) 1.21+0.309 —2.07+0.042 | 0.949+0.061 | —1.84£0.253 0.924 £ 0.042 1.20 £ 0.052
76-85 (0,-1.5, 1.0, (0, 0, 1.0) —0.384 £0.262 | —1.97 £0.039 1.08 £0.078 | —0.533 £0.210 | —0.471 £0.038 | 1.12 4 0.056
86-90 (0,-1.0, 1.0), (0, -1.0, 1.0) —0.373 £0.256 | —1.38£0.163 1.06 +£0.082 | —0.380 £0.173 | —1.39 £0.132 1.08 £ 0.073
91-95 (0,-1.5,0.5), (1.0, -1.0, 0.5) —0.484+0.385 | —1.91+£0.114 | 0.649 £ 0.0406 | 0.649 +0.488 | —1.41 £0.0649 | 0.53 £ 0.0474
96-100 (0,1.5,0.5), (1.0, 1.0, 0.5) —0.437£0.395 | 1.20£0.0305 | 0.679 40.0518 | 0.586 £0.126 | 0.705 £ 0.0504 | 0.595 £ 0.0890

Note: All values are in centimeters. Commanded offsets represent the target position of the object stack as
(x0££1,y0ff1,drop0ff1l), (x0f£2, yO£f£2, drop0f£2). Due to sensor and motor inaccuracies, the actual
positions were different from the originally commanded ones.

- T T T
"take" ty "stack" ty "release” 1 t

ts "stack"
(a) Camera positioning. (b) Stacking process.

Figure 4: Experimental setup for real-robot data collection with the TIAGo platform.

4.2.4 Interventional Ability of Cause Variables (P3)

We use the TIAGo robot, equipped with a 7-DoF arm, an adjustable torso, and a parallel grip-
per, which is capable of performing the cube stacking task. Motion planning and execution for
pick&place actions are conducted using Movelt!. This setup allows us to stack the cube in a se-
lected gripper position. Before moving to the stacking position, the robot should pre-command
the z, y, and z offsets, which requires transforming the measured cube positions from the exter-
nal camera frame to the robot’s frame. To accurately align external camera observations with the
robot’s kinematic frame, we perform a calibration between the RealSense camera frame and the
robot’s base_link frame. This guarantees consistency between detected cube positions and robot
motion planning. TIAGo’s internal joint encoders and forward kinematics are used to estimate the
end-effector pose during the plan and execution of each stacking action.

4.2.5 Capture Single-Value, Time-aligned Measurements (P4)

In our setup, the high-level motion planner defines a symbolic sequence of actions (e.g., reach,
take, stack, release) that the robot must execute to complete the stacking tasks. For instance, the
stack action is predefined in the planner, such as the end-effector moves to the target cube-dropping
position with the gripper closed to 5 cm holding CubeUpl, and the release action corresponds to
opening the gripper to 7cm to drop the holding cube. We use the action sequence to trigger time-
aligned measurement. For example, we measure and record xOff1, y0ff1, drop0ff1 after the first



stack event is finished and just before the first release event is executed (Fig. 4b, top row, third image
from the left, timestamp ¢5). The measurement for x0f£2, yOff2, drop0ff2 is similar (Fig. 4b,
timestamp tg).

4.2.6 Record Real-World Noise and Execution Deviations (P5)

In addition to commanded C, we store the actual measured offsets from the perception system.
This allows us to capture discrepancies caused by motion errors, perception noise, or slippage. The
deviations between commanded and measured values are shown in Table 1.

5 Case Study: Using the Dataset for Sim-to-Real Evaluation

After collecting the real-robot dataset, we . S fed e
demonstrate its usability by performing sim-

Task and variables Rsa\ robot(s)
. . . . definition
to-real evaluation of a simulation-trained FWG

causal Bayesian Network (CBN). A sim-to-

real evaluation module is integrated into the —— % ——
existing CBN learning pipeline (Sec. 2.2), as e | e e
illustrated in Fig. 5.

This case study focuses on how the collected

dataset can quantitatively assess t_he transfer Figure 5: The pipeline for collecting and utilizing
of causal knowledge from simulation to real-  ohotic data to learn and evaluate Causal Bayesian
world trials. We first introduce the evalua- Networks in task-agnostic settings.

tion metrics, then assess the obtained causal
model on the simulation test dataset, and finally apply the real-robot dataset to validate the model’s
generalizability from sim to real.

5.1 Evaluation Metrics

* Mean Error: The Mean Error measures the average absolute difference between the Condi-
tional Probability Distributions (CPDs) of CBN learned from the simulation-trained data and those
estimated from the real-robot dataset. Particularly, it compares the learned parameters 93713 with
their empirical counterparts 9:‘;"5; over all configurations of the variable X; and its parent variables
IIx,. This metric could assess the parameter robustness of a simulation-trained causal model when

deployed in real-world conditions.

[Val(X3)] - [T | 2 2

z€Val(X;) uelly,

test train
zlu 9:8 |

2

This formulation assigns equal weight to the CPD parameter of each variable, reflecting an assump-
tion that every conditional probability is equally important in representing the joint distribution of
the CBN. This choice is motivated by the fact that errors in any part of the CBN can propagate
through the graph and potentially affect downstream inference. However, we acknowledge that
not all CPDs may contribute equally to the final goal outcome G. Future work could introduce goal-
sensitive weightings, for example, by using the causal graph structure to prioritize CPDs with higher
influence on G (e.g., by weighting according to path-specific causal effects or mutual information
with G). Such extensions would allow the metric to focus on the parameters that most critically
impact task success.

* Accuracy, Precision, Recall, F1-Score: These metrics evaluate the predictive performance of
the simulation-trained model on real-robot data. The ground-truth outcome is given by the binary
success variable GG, while the model outputs a probability distribution P(Ggyec|C) for each test
sample. To obtain binary predictions, we apply a decision threshold e, classifying a trial as successful
if P(Ggyuec|C) > €. We adopt e = 0.5 following the Bayes decision rule, which selects the class with
the highest posterior probability under symmetric misclassification costs [23]. The resulting binary



predictions are compared against ground-truth labels to compute Accuracy, Precision, Recall, and
F1-Score. While the existing pipeline reports only Accuracy, we extend it with additional metrics
for a more comprehensive evaluation of predictive reliability.

5.2 Obtained Causal Model

To select the optimal number of discretization intervals for the continuous variables
{x0£ff1,y0ff1,drop0ffl, x0f£2, yOf£f2, drop0£ff2}, we performed a 10-fold cross-validation
over a range of candidate values. Based on the mean validation performance, we chose to use
seven equal-width discretization intervals within the value ranges (See the right part of Fig. 2).

Subsequently, we assessed the model’s performance on the separate simulation evaluation dataset
(Section 4.1), using the metrics defined in Section 5.1. The resulting performances are presented in
the second column of Table 2. A failure prediction accuracy of 0.9425 is achieved.

5.3 Sim-to-Real Evaluation

To evaluate how well the causal model reflects the real-world scenarios, we assessed the obtained
causal model on the 100 real-world samples using the same metrics (Section 5.1) to evaluate the
probability distribution difference and the predictive performance. During the prediction, the stack-
ing offsets recorded from the real-world experiments were discretized using the same discretization
intervals learned during the training.

The sim-to-real performance of the cube-stacking  Taple 2: Failure Prediction Results (Averaged
task (Tab. 2, third column) shows a 14% increase  over All Samples) for Simulation and Real

in mean error and a 10% decrease in accuracy Robot.
from the simulated evaluation result. To the best

of our knowledge, while prior work has focused Metric Simulation Real Robot
on causal learning in either simulation or real %:g&lrir;or 881 gég
settings, the average sim-to-real performance de- Precision 0.93 0.97
crease has not been quantified in the literature. Recall 0.95 0.79
Thus, the extended sim-to-real evaluation mod- F1 Score 0.94 0.89

ule supported by the real-robot dataset provides a
quantitative measure of how well the CBN obtained from simulated data transfers to reality. Depend-
ing on the application context (e.g., the severity of potential failure consequences), the researcher
can assess whether the achieved accuracy is sufficient and either proceed with deployment or refine
the model using real-world measurements.

6 Conclusion

In this work, we presented a case study using a collected real-robot dataset to perform sim-to-real
evaluation of simulation-trained CBNs. We defined task-agnostic guidelines for real-robot data
collection and demonstrated how the resulting structured dataset can be used to validate whether
causal relations learned in simulation hold on a physical robot. Experiments on the TIAGo platform
confirmed the method’s ability to support systematic sim-to-real assessment, with ongoing tests on
a different robot platform (Justin, see Appendix) indicating potential transferability.

Our results show that simulation-trained CBNs can be reliably evaluated with a relatively small
number of real-robot trials, reducing the need for large-scale data collection while still providing
meaningful validation. One limitation is that our approach is sensitive to environmental changes, as
small variations in RGB-D sensor placement or gripper configuration can non-linearly distort pose
estimates and thus alter the learned causal model. Future work should consider methods to quantify
and mitigate these effects when extending sim-to-real evaluation to new experiment configurations.
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Appendix
A Transferability to Different Robot Platforms

We have also initiated data collection using the Justin robot platform (see Fig. 6). So far, we have
conducted ten repetitions and achieved a sim-to-real success rate of zyz, serving as a proof of
concept for the transferability of our causal model to different robot platforms.

Figure 6: Stacking experiments performed with the Justin robot.
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